What makes it so special on using Lithium ion LFP battery for Solar Energy Storage.

The energy storage market is became large these days. no matter you live on grid or off grid. BESS helps solve variability issues with renewables. Adding a solar battery to a grid-connected residential project also allows the array to keep providing power to critical loads when the grid is down, instead of having to disconnect and refrain from generating power. Storage can also help commercial consumers reduce peak demand charges, significantly lowering their energy bills. Storage is even used at the utility level to help provide ancillary services to the grid. The need for storage grows as states pass self-consumption and other legislation that promotes the use of batteries.

Batteries in solar energy storage have to meet the demands of unstable grid energy, heavy cycling (charging and discharging) and irregular full recharging. There’s a variety of battery types fitted for these unique requirements. Considerations for choosing a battery include cost, cycle life and installation and maintenance.

Lithium-ion LFP Battery

According to a U.S. Solar Energy Monitor report, lithium-ion batteries are the most common storage technology, regardless of application. There are three types: pouches such as in smartphones and tablets, cylindrical such as in power tools, and prismatic (which come in various shapes) such as in electronic vehicles. Prismatic types often have corrugated sides, which create air gaps between adjacent cells and can aid in cooling. The prismatic can have applications in solar energy storage, specifically lithium ion phosphate (LFP) batteries.

Cost: Deutsche Bank analysts estimated lithium-ion batteries at about $500/kWh at the end of 2014, but OSM as an OEM Lithium ion manufacturer  based said it’s closer to $450 to $550/kWh. Overall, from manufactuer price, it is very close to lead acid batteries. Part of this cost comes from needing a battery management system to monitor the voltage and temperature of each cell to prevent excessive charging and discharging. A BMS isn’t critical for other technologies like lead acid because the inverter or charger controller can handle the battery charging regime. However, some manufacturers note that, if sized correctly, lithium-ion cells can reduce the cost of peripheral devices like charge controllers, offsetting its higher initial price and lowering cost-of-ownership.


Cycling: Lithium-ion batteries can typically deliver more cycles in their lifetime than lead-acid. This makes them a good choice for applications when batteries are cycled to provide ancillary services to the grid such as energy smoothing or frequency and voltage support. The most important benefit lithium-ion provides for solar is its high charge and discharge efficiencies, which help harvest more energy. Lithium-ion batteries also lose less capacity when idle, which is useful in solar installations where energy is only used occasionally.

Replacement/maintenance: Lithium-ion batteries can be lighter and more self contained than lead-acid batteries, so may be easier to install and change out. They can be wall-mounted and located indoors or outdoors. They are solid, so don’t require refills or maintenance.

Disposal: Lithium-ion batteries can use organic or inorganic cells. Organic-based batteries are free from any toxins. Inorganic-based cells are much more difficult to dispose of. Inorganic lithium-ion is toxic so it must be disposed of properly. Manufacturers encourage recycling, but there is often a price. Spent lithium-ion cells have little commercial value. Lithium-ion manufacturing involves lengthy preparation and purification of the raw material. In recycling, the metal must go through a similar process again, so it’s often cheaper to mine virgin material than retrieve it from recycling.


Choosing the right battery

Use a sizing calculator
Battery sizing is essential but often overlooked by users and installers. Batteries in PV systems are routinely undersized due to cost or because the system loads were underestimated. It’s important to know the customer’s power needs and correctly plan. Many online calculators provided by battery manufacturers and other software simplifies determining battery capacity for load requirements.

BMS Tech

Consider cost of ownership
There are several factors that should be taken into account when determining the total cost of ownership over the life of the battery.
• Price: A battery with a low price is always attractive, but if low price comes at the expense of quality and battery life, the need for frequent battery replacements could boost the cost over time. That’s why it’s important to consider issues other than price when making the decision.
• Capacity: Battery capacity is important because it’s a measure of the amount of energy stored in the battery.
• Voltage: The battery bank voltage must be considered to ensure it matches the system requirements. The battery bank voltage is often determined by the inverter specifications if installing a DC-to-AC system or by the voltage of the loads in a DC system.
• Cycle Life: The most critical consideration is cycle life, which provides the number of discharge/charge cycles the battery can provide before capacity drops to a specified percentage of rated capacity. Batteries from different manufacturers may have the same capacity and energy content and be similar in weight. But design, materials, process and quality influence how long the battery will cycle.


OSM 5Kwh Lithium ion LFP battery moduler

The model is stackable flexible for different energy requirments. You can add more modulers to increase capacity and energy like 10Kwh or 20kwh

5000wh battery pack

  • Battery Type: Lithium ion LFP (Lithium Iron Phosphate Batteries)
  • Battery System Voltage: 48v ( 51.2v)
  • Total energy: 5 Kwh (5.12Kwh)
  • Capacity: 100 amp hour
  • Brand name: OSM Energy
  • Design installtion: Wall mounted (powerwall)


Battery ratings
The nameplate rating on a battery is the fully developed capacity, so it can be misleading to test a battery immediately after it is purchased because it may take up to 100+ cycles for it to reach its full capacity. Beware of batteries that promise full capacity at the time of purchase or those that reach full capacity after only a few cycles. Batteries with a 100+ cycle warm-up will always outlast those touting a high initial capacity.